Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this coliection of informalion is estimaled fo average 1 hour per response, including the time for reviewing instructions, searching exisling data sources, galhering and
maintaining the dala needed, and compileling and reviewing the collection of information. Send comments regarding Ihis burden estimale or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Dapartment of Defense, Execulive Service Directorale (0704-0188). Respondents should be aware thal notwithstanding any other provision of law, no
person shall be subject o any penalty for failing 1o comply with a collection of informalion if does nol display a currently valid OMB conirol number,

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
24-03-2009 Final Report December 2005 - November 2008
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Evaluation of Acoustic Propagation Paths into the Human Head

5b. GRANT NUMBER
FA9550-06-1-0128
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
O'Brien, William D., Jr.

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
The Board of Trustees of the University of Tllinois REPORT NUMBER

506 S. Wright Street
Urbana, IL 61801

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACﬁGNYM(S)
USAF, AFRL

AF Office of Scientific Research MBS,

875 N. Randolph Street, Room 3112 11. SPONSOR/MONITOR'S REPORT
Arlington, VA 22203 NUMBER(S)

Dr. Willard Larkin/NL

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release

AFRL~OSR-VA-TR-2012- det{

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In summary, the highly interdisciplinary program has addressed successfully the challenging technical goals set forth to develop and validate an
acoustic wave propagation model using well understood and documented computational techniques that track an air-borne incident acoustic wave
propagated around, into and in the human head. A finite element model was formulated for simulating the acoustic wave propagation into
concentric spheres. This model was verified against the closed form solution of the plane wave propagation into concentrie fluid spheres. A ray
tracing method was developed and verified to visualize the acoustic wave propagation pathways from a scalar pressure field. Finally, the ocelusion
effect provides a relatively robust phenomenon to compare the computational findings with the behavioral and functional findings; the occlusion
effect contour (or difference score) between the open and occluded car show a similar trend between the computational findings and the behavioral
and funetional findings. In conclusion, the computational approach, utilizing fluid elements, provides very good agreement with human subjeet
findings.

15. SUBJECT TERMS
acoustic propagation paths; human head; computational techniques: ray tracing methods; human subjeets

16. SECURITY CLASSIFICATION OF: 17. LIMITATIONOF __ [18. NUMBER |19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b, ABSTRACT | c. THIS PAGE ABSTRACT g; - William D. O'Brien, Jr.
uu 19b. TELEPHONE NUMBER (/nciude area code)
217-333-2407

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Sid. 239.18
Adobe Professionat 7.0

Univcrsity of Illinois Bioacoustics Rescarch Laboratory

1 Office: 217)333-1640
at Urbana-Cham PaIZN pepartment of Electrical and Computer Engincering }.A;‘C (Qll-;)) 244.0105
The Beckman Institute for Advanced Science and Technology Bt sic@uiuc edu

405 North Mathews Avcnue
Urbana, [Itinois 61801

March 31, 2009

Willard Larkin
AFOSR/NL

875 North Randolph Street
Arlington, VA 22203

Dear Willard,

Please find enclosed a DVD and a paper copy of Bill O'Brien’s final report on his grant
AFOSR FA9550-06-1-0128.

Bill uploaded the report to the AFOSR website, but also wanted you to have a copy.

Best regards,
r"“"’(lC =

Sue Clay
Administrative Assistant

FINAL REPORT

“Evaluation of Acoustic Propagation Paths into the Human Head”
Grant Number: FA9550-06-1-0128
Program Manager: Dr. Willard Larkin, AFOSR/NL
Reporting Period: December 1, 2005 — November 30, 2008
Report Date: February 24, 2009

Prepared by:
William D. O’Brien, Jr.

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
405 N. Mathews
Urbana, IL 61801
Phone: 217/333-2407
FAX: 217/244-0105
email: wdo@uiuc.edu

1. INTRODUCTION

This is the Final Report for the grant “Evaluation of Acoustic Propagation Paths
into the Human Head,” Grant Number: FA9550-06-1-0128, for the period between
December 1, 2005 and November 30, 2008. The Air Force Program Manager is Dr.
Willard Larkin, and the Principal Investigator at University of lllinois at Urbana-
Champaign is Professor William D. O’Brien, Jr.

The overall objective of the program was the further development and validation
of an acoustic wave propagation model using well understood and documented
computational techniques that track an air-borne incident acoustic wave propagated
around, into and in the human head. The validation testing of the computational model
involved human subject testing. The theoretical model provided a known fundamental
basis, and the experiment provided the evidence to evaluate the model. The goal to
further development and validation of an acoustic wave propagation model has been
achieved.

In summary, the highly interdisciplinary program has addressed successfully the
challenging technical goals set forth to develop and validate an acoustic wave
propagation model using well understood and documented computational techniques that
track an air-borne incident acoustic wave propagated around, into and in the human head.
A finite element model was formulated for simulating the acoustic wave propagation into
concentric spheres. This model was verified against the closed form solution of the plane
wave propagation into concentric fluid spheres. A ray tracing method was developed and
verified to visualize the acoustic wave propagation pathways from a scalar pressure field.
Finally, the occlusion effect provides a relatively robust phenomenon to compare the
computational findings with the behavioral and functional findings; the occlusion effect

10120913130

contour (or difference score) between the open and occluded ear show a similar trend
between the computational findings and the behavioral and functional findings. In
conclusion, the computational approach, utilizing fluid clements, provides very good
agreement with human subject findings.

Acknowledgements: Professor Margaret Wismer (Department of Electrical
Engineering, Bucknell University and Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign) successfully developed the
computational model, and closely interacted with ECE graduate students Jared A.
McNew and Alessandro Bellina. Professors Charissa R. Lansing and Ron D. Chambers
(Department of Speech and Hearing Science, University of Illinois at Urbana-
Champaign), in association with SHS graduate students Sarah Melamed, Lynn M. Brault
and Woojae Han, successfully guided the human subjects testing that yielded new and
interesting results relative to this grant’s goals.

2. ACOUSTIC WAVE PROPAGATION MODEL

This section presents the numerical simulation of evaluating pathways of bone
conducted sound. Two separate algorithms have been developed in order to model the
physical effects of acoustic energy interacting with bone, soft tissue and hearing
protection devices. The original method is a pressure-based formulation of the acoustic
wave equation. The pressure-based method simulates only sound wave propagation
through inhomogencous fluid media. The second method is a displacement-based
approach that simulates elastodynamic wave propagation through a solid medium and/or
a fluid-solid interface. Both algorithms are based on a 3D finite element (FE) matrix
formulation of the acoustic wave equation. Novel aspects of the implementation include
the fact that the program accepts stacks of digital images to form the 3D input volume,
the program uses Message Passing Interface (MPI) directives in order to run on an
intensively parallel cluster, the program uses a uniform grid and has special memory
saving techniques making it possible to simulate relatively large areas. The program also
uses an explicit time-domain algorithm, such that no matrix inversion is required, and
multiple frequencies can be evaluated. Also a Mur-Engquidst absorbing boundary
condition is imposed on the outer boundaries of the simulation area so that the modeling
of radiation and scattering effects from the skull are more accurate. The pressure-based
algorithm is used to simulate the corresponding experiments on live human subjects
whereby sound is transmitted though the skull via head mounted vibrators.

2.1. Theoretical aspects (Pressure-based method)

The acoustic wave equation is given as

v 'va - | a’p +_8_V' 2c(r)a(r) Vp

p(r) p(l')cz(r)gtT at p(r) 0,)

and mathematically characterizes the pressure, p, as it evolves in both space, r, and time,

t, due to input pressures on boundaries and interfaces. In this equation p(r) is a spatially

dependent density, c(r) is the sound speed and O(r) is an attenuation coefficient. This is
an inhomogeneous wave equation with no input driving force on the right hand side. All
inputs are represented by pressures on the surface of one of the modeled structures. The
finite element discretization converts this spatially continuous wave equation into one in
which the pressure is described at discrete points in space indicated by p; in the following
relation

[Kalfe) -l 52 xa)2 - [e) o

The simulated area is sliced into smaller individual elements. For the 3D model
these elements are cubes with 8 nodes, one at each corner. The nodes are numbered 0
through N-1 and {p;} is a vector of length N representing the pressure at all the nodes in
the mesh. For the initial program attenuation is not included and the inertial term time
derivative is approximated with a centered difference cquation such that

p,_pt-2p +pt
at* At '

3

Insertion of this formula into equation 2 and solving for {p,}*®

P} =MI" [k){p} +2{p.} - {o}™" -[Qc]- @

In this formula both the stiffness matrix (K,,,] and the mass matrix [M] are N x N
matrices which relate the node i to every other node in the mesh while [Q] is a row
vector. These matrices are defined by

yields

I | 1 ap,
Kps = -pijNJVN,dV M= p,c]fNJN,dV Qe = pij, 395 &)

in which N; and N; are linear interpolation functions defincd at the nodes. The numerical
algorithm implements this equation. Because first order brick elements in the FE mesh
are used each row has a non-zero value for only the ij entry for which j is one of the 26
nodes surrounding i resulting in sparse matrices for stiffness and mass. Through
diagonalization of the mass matrix, [M], matrix inversion is avoided and a purely explicit
time-stepping scheme is achieved.

Through the use of benchmarking techniques, it has been determined that at least
40 nodes per wavelength are required to accurately model a pressure wave. This means
for an input pressure signal centered around 4 kHz propagating through air with a sound
speed 333 m/s the minimum wavelength, assuming a bandwidth of 2 kHz, is 333/5000 =
6.6 cm. Therefore approximately 400’ = 64 million nodes would be required in order to
simulate an area 60 x 60 x 60 cm [0.60/(0.066/40)=400). In order to not store a matrix of

&L")

27 x 64 million only unique rows of the stiffness matrix are formed and stored. The
process is described in more detail in Section 2.4,

2.2. Theoretical aspects (Displacement-based approach)

The pressure-based formulation does not account for shear phenomena found in
solids such as bone, helmets or other protective gear. In order to account for the solid
shear effects the elastic pressure wave within solids must be modeled along with the
fluid/structure interface. The two main methods for extending the finite-element code to
include solid shear effects is to used a pressure-based equation in the fluid and a
displacement-based method in the solid or to use a pure displacement-based method
throughout the both fluid and solid. In the mixed pressure/displacement formulation the
loading between the fluid and solid must be satisfied by enforcing continuity of pressure
and displacement along all interfaces between the two types of media. The disadvantage
of this method is that the all nodes along fluid-solid interfaces must be identified and
stored and a separate interface matrix must be assembled and solved. In pure
displacement-based equations, particle displacement is solved for both the fluid and solid
media and therefore continuity conditions at fluid-solid interfaces are automatically
satisfied. The disadvantages of this method are that 1) because displacement is a vector
quantity 3 degrees of freedom must be stored for both the fluid and solid and 2) the
irrotation of displacement in the fluid V x i = 0, is not automatically ensured. For this
project the displacement-based method is adopted as it is much easier to code. the
additional memory requirements are incremental for the high performance computers and
there are documented methods for controlling the rotation problem.

Displacement wave propagation through solids is modeled via the elastic wave
equation written succinctly as (Auld, 1990; Eq. 6.5)

2-
V,+(C:V,i)= p%:i (6)

in which G is a vector of the displacements in the x, y and z directions, C is a 6 x 6
matrix of the elastic coefficients and V| is a strain operator written out as

2 06 0 22
X daz dy
d d]
V=| 8@ — 0 = 0 = [. N
ay dz ax
g 2+ 29 3
dz dy dx

If one were to expand the elastic wave equation to show individual terms the
result would be three equations with multiple stiffness terms. For instance the simplest

solid is the cubic type for which there are only three independent values for the elastic
stiffness constants namely c,,, ¢;, and c,,. Expanded the wave equation appears as

[& @ @& *u u, 9
kc"a—)(’+c“ [;}3+§’}U.+(Cu +Cu)$‘5’;+(cu+)axaz-P— =0 (8a)
{ a! 2 az 2 2
— — — — _Y -
(c,,+c,,,) ay lc"ay’ +°“[ax2+az’])u +(c,,+c“)ayaZ p s 0 (8b)

2

+—] u, +- p'3u
o’

=0 (8¢c)

8’ d’u a?
{8y -l-c“)t—a;uaiz+(c,2 +c“)ya’z+(c,,§+c“ [

More complex solids such as hexagonal crystals will have similar forms of the
above equations but will have more cross terms for the greater number of independent
stiffness coefficients. If the cubic is also isotropic then ¢,, = ¢,, - 2¢,, and there are only

two wave velocities: longitudinal given as V, = \Jc, /p and shear givenas V, = \Jc,, /p.
For solids more complex than isotropic the wave velocities are direction dependent.

As with the pressure equation a finite element approximation of the elastic wave
equation yields a set of linear ODE’s that can be expressed in matrix format as

Ko Kyxy Ky u,;
Ky Ky Ky u, [M]{ } [Qs] (9

sz sz Kn u,
Thus there are nine distinct stiffness matrices such that

Ky ==[VN,CUN, 4V Ky =-[VN,CYN,dV Ky =-[VN,CUN,dV (10)

Isotropic solids are typically characterized by Young's modulus, E, and the
Poisson ratio, y . Stiffness coefficients can be determined via the following relationships:

(1-y)E

PO, S - 10

" e yi-2y) o

r. YE 10b

iy i-27) U

R (10¢)
242y

The displacement wave equation for the fluid appears as

Pc’V(Veii)-p,— =0 (11)
which, expanded, yields the three equations:

[8%u, F d'u, . 'u, | d%u, 0 -
|ox® " axay " axaz) P ae e
(@, @', 3%,) ',
= 4 +—2 - =0
kayax ay’ ayaz) Pe o (12b)
azu a?u’ a2u \ alu
B x4 + zz -Pr 21
dzdx 9zdy oz } ot

B

=0 (12¢)

in which B=p.c? is the bulk modulus for the fluid and is analogous to the elastic
stiffness constants in the solid. These equations are compatible with the displacement
wave cquations in solids if B=c, 6 =c,, and c,=0. Numerical artifacts and
instabilities may arise if c,, = 0 ; thus, this quantity should be small but greater than 0.

Pressure can be derived from the displacement via p=-BVei which in
numerical form becomes

A
p-—B(A"*+ °’+A”'-). (13)
Ax Ay Az

2.3. Preprocessing of images and mesh creation

The 3D FE mesh is created from digital images (see Section 4). The desired
simulation is of sound coupled to the human head via an attached transducer at different
input locations. Digital images of a head can be obtained from either a CT or MRI scan.
Typical scans of cadavers can be very noisy. If one looks at the individual pixel levels of
these images there are many different shades of color and/or gray level values. The FE
algorithm requires distinct colors or pixel values in which each value corresponds to a
material type. Crisper, cleaner images were obtained by CT scanning. The scan yielded
360 2D slices. The slices were imported into a medical rendering software package
known as Amira and soft tissue representing brain fluid and skin were added to recreate a
replica of a human head. Transducers attached to the mastoid and forchcad were also
drawn in. The transducers arc included in the simulation as initial results of an input
signal simulated without the transducer shows the majority of the acoustic energy not
being coupled into the head but radiating away from the skull. Each medium in the
image is given a distinct color. This replica is in terms of acoustic properties such that
the entire brain appears as a homogenous fluid-gel material. Examples of representative
slices arc shown below for both the original scan and the enhanced drawing. The black
(royal blue) area is background and has the acoustic properties of air for the simulation.

The slices are exported from Amira as .tiff files. The .tiff files are imported into Matlab
and a simple script is used to convert the colors to numbers. For instance 0 is assigned to
black, | to green etc. The numbers for each slice are written out, in straight ASCII, to a
xt file. The .txt files are numbered in sequential order. Additional .txt files can be
added at the beginning and end of the sequential list in order to have more background
material above and below the skull.

The program reads in the numbers in the .txt files and each slice is assumed to
have a finite thickness equal to the element length is the z direction. Thus the pixel
values for the first slice become a voxel value and each of these voxels correspond to a
cube element with acoustic material properties. These material properties and element
dimensions are used to form the stiffness and mass matrices of the second section.
Separate simulations are run for input signals with different center frequencies. As the
frequency of the input signal is decreased and the wavelength increases the images are
downsampled so that a distance of at least two wavelengths between the input force and
the outer boundary is maintained. In Figure 1 are cross-sectional slices showing the car
canals. In Figure 2 are cross-sectional slices showing the location of the mastoid
transducers. Figures | and 2 show different cross sectional slices of the same 3D scan.
Figure 2 is a lower (caudad) slice than Figure 1. Figure | shows the development form
the original scan to the final version. Figure 2 shows 3 different slices for corresponding
reductions in frequencies. The color maps in the 2 figures are different. Intensity plots of
the propagation of the signal with input at the mastoid are shown in Figure 3 for 8 kHz, 4
kHz and 1 kHz center frequencies.

Figure 1: The original slice of a CT scan of a dry skull, the enhanced image with soft
tissues and earplugs added (34 cm wide by 50.3 cm long) and the downsampled image to
simulate a 4 kHz signal (68 cm wide by 100.6 cm long).

2.4. Array structure and memory conservation techniques

The program consists of 4 major sections namely the input section, the elemental
matrix assembly section, the global matrix assembly section, and the time-stepping
section. The input routine reads in the digital images and an input file which includes
additional information about the model such as transducer location, transducer frequency,
length of run and material parameters. Within the input section there are two notable

routines. One is constraint() which processes input information to determine node
numbers for excitation inputs, element size, node numbers for recording time traces. The
other major subroutine of the input section is ‘pointer’ which reads in the sequential list
of digital images and assigns a ‘node type’ to each node based on the elements
surrounding that node.

Figure 2: Slices showing the placement of the mastoid transducers. Original (a; far left) is
34 cm by 50.3 ¢cm, downsampled by a factor of 2 (b; middle) is 68 cm by 100.6 cm,
downsampled by a factor of 4 (c; far right) is 136 cm by 201.2 cm. All have 339 by 501
pixels. Each pixel is one element.

Figure 3: Intensity plots showing acoustic pressure emanating from a right mastoid
transducer for 8 kHz, 4 kHz and | kHz.

Every element has a node at each of its 8 corners and every (non-boundary) node
is surrounded by 8 elements. The pressure at each node, i, is determined by multiplying
the 27 non-zero entries in the j* row of the matrix [M]'[K,). The nodes are sequentially
numbered O through N-1 starting with the lower left node of the bottom slice. The rows
are not unique. For instance all the black or background nodes will have identical values
for the 27 entries. The same is true for the other color nodes. Interface nodes between
colors may also be repeated. There are 8 elements (or pixels) surrounding each node. If
an interface node between two materials has the same pattern of elements around it as
another interface node then these 2 nodes are of the same type. There is a global integer
array, of length N, known as NodeType and for each node, i, NodeTypeli] identifies the

type of node. An array known as PixType identifies the type of pixel or element. Node i
is surrounded by PixType[i-1], PixType[i], PixType[i+NXI1-1], PixType[i+NX1],
PixType[i+NLAY-1],PixType[i+NLAY], PixType[i+NLAY+NX1-1] and
PixType[i+NLAY+NX1] or elements A, B, C, D, E, F, G and H in Figure 4. Note that
NX1 is the number of nodes in a row in the x direction and NLAY is equal to the number
of nodes in a slice or NLAY=NX1XNY1.

00X

2 * 1
000 100 200
L,
Y
Relationship between node and elements for Node numbering for elemental
global stiffness matnix. stiffness matrix.

Figure 4. Node Elements in the Computational Model

The 27 entries of a (K] row are stored in a 3 x 3 x 3 array known as the global
stiffness array UNKF[i][jILk][1] (or UNKF_ABJi][ji(k](!] in which A and B are X, Y, Z
for the displacement-based code). The fourth dimension references the node type. For
instance all the background nodes will have NodeType[i}]=4 and therefore
UNKF(i][jl(k){4] will store the stiffness array entries for node type 4. The number of
different node types depends on the number of different materials plus however many
unique interface nodes exist. This value is stored in a variable NumUniqueNodes and is
always an integer several orders of magnitude less than 64 million.

The global stiffness array(s) is assembled, for each node type, in the routine
GlobMatAssemb. The array is assembled from the elemental stiffness array, EKF(i][}],
which is formed in the routine ElemMatAssemb. The elemental stiffness array is an 8 x 8
matrix and relates each local node in the element to every other local node. See Figure 4
for local node numbering. There is a third dimension in EKF that references the material
type of that element. Note that unlike the global stiffness matrix for the nodes, EKF will
only have the number of types equal to the number of materials in the model, usually 3 or
4, since elements are not split across interfaces. The GlobMatAssemb routine forms the
stiffness matrix by mapping EKF from the local node into UNKF for the global node
type. For instance referring to Figure 4 UNKF[0][0][0] is equal to EKF[6][0] of element
A while UNKF[1][0][0] is equal to EKF[6][1] of A plus EKF{7][0] of B. An array
known as IntFaceNodeType maps the element type of EKF to the node type for UNKF.

The same general principles are used to assemble the mass matrix array but it is much
easier since the mass matrix is diagonal according to a well established FE mass lumping
technique.

2.5. Parallelization using Message Passing Interface (MPI)

The current trend in supercomputer architecture is towards distributed memory
machines or clusters in which larger autonomous processors with individual memory
banks are linked together through a high spced communications port. These machines
are easier, hence cheaper, to build.

In order to take advantage of availability and speed of distributed memory
machines the algorithm is adapted to these clusters using MPI routines. In a shared
memory architecture there are many small processors but they all access the same core
memory and there is a main interface node that controls all the other processors, whereas
in a distributed memory machine each processor has its own memory bank and all the
processors work independently of each other. Therefore, there needs to be
communication between the processors. Programming in MPI on clusters requires a
slightly different mindset because the program will be launched on all the processors
when it is executed. Thus when a program is running on a 10 node cluster, there will
actually be 10 versions of that program running and 10 values of all the variables defined
in that program. It is possible to limit statements and variables to an individual processor
as there is a variable known as my_rank which is equal to the processor or node number.
Note that processors in clusters are also referred to as nodes and should not be confused
with the nodes in the finite element mesh. Thus to define a variable N=100 on node S a
program could have the statement if(my_rank==5) N=100. Without the ‘if’ statement
there would be 10 variables equal to 100 on all the nodes.

The current program is adapted to clusters by assigning one slice, in the digital
image set, per processor. Thus in the current example there are 400 slices with 400 x 400
nodes each so the MPI code would be launched on 400 processors. The slice number will
correspond to the processor number. Within the TimeStepAlg routine the inner loop will
step through 400 x 400 = 160,000 nodes rather than 64 million nodes. When it executes
400 processors will step through 160,000 nodes rather than one master processor stepping
through 64 million nodes. Naturally each processor will need to know also the pressures
for the slices immediately above and below it or the z+1 and z-1 slice. This
communication is done with MPI_Send and MPI_Recv commands. At every time step
before the pressures are computed a set of MPI_Send and MPI_Recv commands are
given so that the processor for every slice has the information from the adjoining slice.
Arrays UFFr and UFBKk are length 160,000 and store the pressure values for the z+1 and
z-1 slices respectively. It is important to have MPI_Barrier commands before and after
each time-step so that one processor does not get ahead of (or behind) the others.

In addition to the routines updating the pressure, the Pointer subroutine also

requires MPI commands. The my_rank variable is used so that each processor reads in
only one slice. As with most of the variables the NodeType array will be defined on all

-10 -

the processors and will have a length of 160,000. In order for the routine to determine
what type a node is the pixel or element types from the adjoining slice must be used.
Therefore within the pointer subroutine the pixel type information from the adjoining z-1
slice is sent to the z processor and the z processor uses this information to determine node

type.

There is no message passing among the nodes in the ElemMatAssemb and
GlobMatAssemb routines. Each processor will have its own value for NumUniqueNodes
and its own set of EKF and UNKF matrices. This means there will be duplication of
these matrices since many of the node types on one processor will be the same as on
another. This tradeoff in memory conservation is justified by the ease and simplicity of
having each processor use its own set of matrices when updating the pressures at nodes in
its slice.

2.6. Computational model results

Simulations of experimental tests, in which transducer inputs are located at
different head locations and behavioral assessment of sound is recorded, are used to
assess the efficacy of the numerical model. Acoustic pressure level measurements in the
ear (auditory canal and cochlea) and back of the head for transducers at the right mastoid
(Table 1) and forehcad (Table 2) are tabulated. The flexibility of numerical simulations
allows one to determinc pressure levels at any point in the model area. For these results
the earplugs were turned off by setting their material parameters equal to those of air.
Measurement points are in the air pathways (auditory canal) of both ear canals and in the
bone connected to the inner ear (cochlea) as well as in the bone at the back of the skull.
The fact that resulting pressure is generally higher in the air pathway (auditory canal)
indicates that not all the input signal is being coupled to the skull and some energy is
being conducted via the background air as is also indicated by Figure 3. More complete
coupling is being achieved with the experimental setup. It is possible to determine the
error duc to air conducted energy by modeling the transducer without the head target and
subtracting the total incident field from the total field.

2.7. Three-dimensional simulation results of the occlusion effect

The occlusion effect was modeled numerically and in three dimensions by giving
the earplugs in Figure 14 (Section 4) a sound speed of 1878 mv/s and a density of 1200
kg/m’. Plots of the pressure measured in the right car canals for the right mastoid
mounted transducer centered at 3 kHz are shown in Figure S. Note that there is
considerably more ringing in the occluded ear and the magnitude of this ringing is
frequency dependent. Results showing the peak of the ringing to the input are displayed
in Table 3. The pressure is higher in the occluded ear than in the unoccluded for all
frequencies. For the occluded ear the pressure is higher at 1 kHz and 4 kHz than at 2 and
3 kHz.

Table 1: Acoustic pressure measurements as a function of frequency in the ears at the
specified locations for transducer attached to the right mastoid. The pressure level (in dB)
is that recorded at the indicated site (auditory canal or cochlea) relative to the pressure

level just under the transducer in the skin.

4kHz 3kHz 2kHz | 1.5kHz | 1kHz
Right auditory canal 3.1dB -1.0dB -5.7dB -21 dB -26 dB
Right cochlex -45dB -4.0 dB -3.4dB -185dB | -19.8dB
Left auditory canal -52dB -51.6dB | -55.6dB | -70.5dB | -73.7dB
Left cochlea -56 dB -56 dB -53dB -22.5dB -32dB
Back of head -77 dB -71.6 dB -67 dB -75dB -71 dB

Table 2: Acoustic pressure measurements as a function of frequency in the ears at the
specified locations for transducer attached to the forehead. The pressure level (in dB) is
that recorded at the indicated site (auditory canal or cochlea) relative to the pressure level
just under the transducer in the skin.

4 kHz 3 kHz 2 kHz 1.5 kHz 1 kHz
Right auditory canal -52dB -37.4 dB -54 dB -66 dB -76 dB
Right cochlea -59 dB -41.6 dB -55 dB -80 dB -70 dB
Left auditory canal -60 dB -35.6dB -54 dB -76 dB -79dB
Left cochlea -70 dB -48.8 dB -66 dB -60 dB -79 dB
Back of head -98 dB -74.8 dB -80 dB -105 dB 98 dB

Pressure vs time lor unocciuced ear ShHs - anhmmdm.&ﬂz
§ & y I\
e s ™\
i ca g o \‘r \/ \j :
3 ‘
s - ! ® Time (miSec)) -

Figure 5. Plots of pressure versus time in the ear canal and ear canal bone for the
unoccluded (left) and occluded (right) ear. Input signal is blue, pressure in canal air
passage is green and pressure in canal bone is red.

Table 3. Simulation results, in dB, of pressure in the ear canal air passage-way as a
function of frequency for the occluded and unoccluded ear.

1 kHz 2 kHz 3 kHz 4 kHz
unoccluded -19dB -19dB -24db -22dB
occluded -9.5dB -11dB -15dB -5dB

3. CONCENTRIC SPHERE FINITE ELEMENT MODEL

Like many numerical methods, it is possible to have divergent solutions. It is
therefore important to validate the model with geometries that have analytical solutions.
One such geometry is that of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>